Makale Bilgileri |
Dergi: |
Business and Economics Research Journal |
Makalenin Başlığı: |
Çok Amaçlı Genetik Algoritma ve Hedef Programlama Metotlarını Kullanarak Hisse Senedi Portföy Optimizasyonu: BİST-30’da Bir Uygulama |
Yazar(lar): |
Emre Yakut, Ahmet Çankal |
Cilt: |
7 |
Sayı: |
2 |
Yıl: |
2016 |
Sayfa: |
43-62 |
ISSN: |
1309-2448 |
DOI Numarası: |
10.20409/berj.2016217495 |
|
Öz |
Portföy optimizasyon problemi, Markowitz’in ortaya koyduğu modern portföy teorisi çalışmalarından bu yana finans mühendisliğinin ilgi alanlarından biri olmuştur. En iyi portföyü oluşturabilmek için portföyde yer alan hisse senetlerinin getiri ve risk ilişkisine bakılarak portföy seçim işlemi gerçekleştirilmektedir. Finansal yöneticinin amacı, minimum risk ve maksimum getiriyi sağlayacak etkin bir portföyü oluşturmaktır. Bu amaçla yeni modeller ve bilgisayar teknolojileri artan bir hızla devam etmektedir. Genetik algoritmalar doğal seçim prensiplerine dayanan stokastik algoritma ailesindendir. Bu çalışmada BIST 30 hisse senetlerinin 2004-2013 dönemleri arasında aylık kapanış fiyatları verisi kullanılmıştır. Markowitz ortalama varyans modeli ile hedef programlama ve çok amaçlı genetik algoritma yöntemleri uygulanarak 8 farklı getiri-risk seviyesinde portföyler oluşturulmuştur. Portföyün seçim işleminde yararlanılan parametrik bir istatistiki ölçü birimi olan değişim katsayısı kullanılmıştır. Çalışmadan elde edilen sonuçlar itibari ile en iyi portföyün genetik algoritma için 7 nolu portföy ve bu portföyün 5 adet hisse senedinden, kuadratik hedef programlama için en iyi portföyün 4 nolu portföy ve bu portföyün 8 adet hisse senedinden oluştuğu belirlenmiştir. Optimizasyon teknikleri açısından kıyaslama yapıldığında kuadratik hedef programlamanın genetik algoritmadan daha iyi sonuçlar verdiği tespit edilmiştir. |
Anahtar Kelimeler: |
Genetik Algoritma, Çok Amaçlı Genetik Algoritma, Hedef Programlama, Optimum Portföy, Portföy Seçimi |
|
JEL Sınıflandırması: |
C60, C61, C44, G11 |
|