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Abstract: Several multi-criteria decision-making methods have been developed to solve 
complex decision problems encountered in business and daily life. These methods offer 
a systematic approach to evaluating multiple decision alternatives and conflicting 
criteria. The normalization stage in the multi-criteria decision-making process is 
important in evaluating the contribution of criteria or alternatives to the process in a 
fair, consistent, comparable, and objective way.  Various methods employ one or more 
normalization techniques, and the combined use of multiple normalization techniques 
allows for a comprehensive analysis. In this study, Double Normalized Measurement of 
Alternatives and Ranking According to COmpromise Solution (DNMARCOS), Alternative 
Ranking Order Method Accounting for Two Step Normalization (AROMAN), and Mixed 
Aggregation by Comprehensive Normalization Technique (MACONT) methods used 
multiple normalization techniques are compared and evaluated for a robot vacuum 
cleaner selection problem. The relations of the ranking results were evaluated by 
correlation analysis. The performance comparisons of the methods were made in terms 
of the final scores' standard deviations and the methods' computational complexity. The 
findings indicate that DNMARCOS has the best performance among the three methods 
and MACONT has the lowest performance. 
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 1. Introduction 

 Many simple and complex decision problems are encountered in our daily life and professional 
business life.  While most decision problems are solved instantly by the brain's own mechanisms, some 
decisions take longer. Many factors, such as the number of criteria to be considered in the decision problem, 
the relative or absolute importance levels and priorities of the criteria, the contradictory aspects of the 
criteria, the number of alternatives to be chosen from, the degree of impact of the decision, the element of 
uncertainty, the attitude of the decision maker make it difficult to make some decisions. In this way, many 
qualified decision-making methods have been developed to help solve complex decision problems. The 
literature, which has been enriched with diversified methods in recent years, has divided multi-criteria 
decision problems into two categories: multi-objective and multi-attribute (Tzeng & Huang, 2011: 1). Multi-
objective decision problems can be defined as decision problems that involve more than one goal (objective) 
that needs to be optimized. On the other hand, multi-attribute decision-making techniques are used for 
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prioritizing and weighting the criteria considered in decision problems and/or evaluating and ranking multiple 
alternatives with multiple criteria in the same direction or conflicting with each other. In this study, the term 
multi-criteria decision-making (MCDM) is used to mean multi-attribute decision-making. 

 In many MCDM problems, the criteria have different scales. Therefore, preprocessing is necessary to 
achieve a consistent scale, allowing the aggregation of numerical and comparable criteria to obtain a final 
score for each alternative (Vafaei et al., 2018). Normalization is an important step in the multi-criteria 
decision-making process that makes the evaluation criteria considered in the decision problem dimensionless 
and unitless (Jahan & Edwards, 2014). An increasing number of methods in the literature differ regarding 
their normalization and criteria aggregation methods. Due to these differences, the final rankings obtained 
from different methods may vary and be similar. The normalization process is vital and performed to 
standardize criteria with varying units of measurement and make them comparable and evaluable together. 
There are different functions proposed in the literature for this process. The functions vary according to 
whether the evaluated criterion is benefit or cost oriented. The most used normalization methods are given 
in the following equations (Aytekin, 2021: 4-5; Kosareva et al., 2018; Vafaei et al., 2018). 

Linear Sum Based 
Normalization 

: 

Benefit Criteria 𝑛𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 (1) 

Cost Criteria 𝑛𝑖𝑗 =
1/𝑥𝑖𝑗

∑ 1/𝑥𝑖𝑗
𝑚
𝑖=1

 (2) 

Linear Ratio Based 
Normalization 

: 

Benefit Criteria 𝑛𝑖𝑗 =
𝑥𝑖𝑗

max
𝑖
𝑥𝑖𝑗

 (3) 

Cost Criteria 𝑛𝑖𝑗 =
min
𝑖
𝑥𝑖𝑗

𝑥𝑖𝑗
 (4) 

Linear Max-Min 
Normalization 

: 

Benefit Criteria 𝑛𝑖𝑗 =
𝑥𝑖𝑗 −𝑚𝑖𝑛 𝑥𝑖𝑗

max𝑥𝑖𝑗 −min𝑥𝑖𝑗
 (5) 

Cost Criteria 𝑛𝑖𝑗 =
max𝑥𝑖𝑗 −𝑥𝑖𝑗

max𝑥𝑖𝑗 −min𝑥𝑖𝑗
 (6) 

Vector Normalization : 

Benefit Criteria 
𝑛𝑖𝑗 =

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

, 
(7) 

Cost Criteria 
𝑛𝑖𝑗 = 1 −

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

, 
(8) 

 As seen in the equations, different normalization techniques have different calculation procedures. 
The normalization technique chosen in the decision-making process significantly impacts the final decision 
(Baydaş et al., 2023; Jafaryeganeh et al., 2020; Polska et al., 2021). For this reason, the normalization stage 
is an important stage that diversifies and differentiates multi-criteria decision-making methods. A review of 
multi-criteria decision-making techniques using these methods is presented in Table 1. The table shows that 
the most used normalization functions among multi-criteria decision-making methods are linear ratio-based 
functions and linear max-min normalization functions.   

 The ease of understanding and application of linear techniques can be shown as two of the reasons 
why they are highly preferred in multi-criteria decision-making methods. On the other hand, the fact that the 



 

131 Business and Economics Research Journal, 15(2):129-154, 2024 

P. Güçlü 

number of decision units evaluated in decision problems is generally limited, the data set is not required to 
be normally distributed, and the main purpose is to facilitate the comparability of variables by removing 
measurement units and extreme values can be listed among the reasons why linear normalization methods 
are used more frequently.   

Table 1. Normalization Techniques Used by Different MCDM Methods 

 
Linear Sum 

Based Norm. 
Linear Ratio 
Based Norm. 

Linear Max-Min 
Norm. 

Vector Norm. 

TOPSIS    ✓  
VIKOR   ✓   
ELECTRE  ✓   ✓  
ARAS ✓     
COPRAS ✓     
MAUT   ✓   
MAIRCA   ✓   
CoCoSo   ✓   
CILOS ✓     
SECA  ✓    
MEREC  ✓    
LOPCOW   ✓   
CRADIS  ✓    
CODAS  ✓    
WASPAS  ✓    
MOORA    ✓  
MOOSRA    ✓  
TODIM   ✓   
MABAC   ✓   
EDAS  ✓    
MARA  ✓    
TARO  ✓    
MARCOS  ✓    
WEDBA  ✓    
KEMIRA-M   ✓   

Note: TOPSIS (Technique for Order Preference by Similarity to Ideal Solution); VIKOR (Vlse Kriterijumska Optimizacija 
I Kompromisno Resenje-), ELECTRE (ÉLimination Et Choix Traduisant la REalité), ARAS (Additive Ratio Assessment), 
COPRAS (Complex. Proportional Assessment), MAUT (Multiple Attribute Utility Theory), MAIRCA (Multi Atributive 
Ideal-Real Comparative Analysis), CoCoSo (Combined Compromise Solution), CILOS (Criterion Impact Loss), SECA 
(Simultaneous Evaluation of Criteria and Alternatives), MEREC (Method based on the Removal Effects of Criteria), 
LOPCOV (Logarithmic Percentage Change-driven Objective Weighting), CRADIS (Compromise Ranking of Alternatives 
from Distance to Ideal Solution), CODAS (Combinative Distance-Based Assessment), WASPAS (Weighted Aggregated 
Sum Product Assessment), MOORA (Multi-Objective Optimization method on the basis of Ratio Analysis), MOOSRA 
(Multi-Objective Optimization on the Basis of Simple Ratio Analysis), TODIM (The Interactive Multi-Criteria Decision 
Making), MABAC (Multi-Attributive Border Approximation Area Comparison), EDAS (Evaluation based on Distance 
from Average Solution), MARA (Magnitude of the Area for the Ranking of Alternatives), TARO (Technique of Accurate 
Ranking Order), MARCOS (Measurement of Alternatives and Ranking according to Compromise Solution), WEBDA 
(Weighted Euclidean Distance Based Approximation), and KEMIRA-M (Modified Kemeny Median Indicator Ranks 
Accordance). 

 

 Since the data normalization stage is one of the most important stages that differentiates the 
methods from each other, studies on the comparison of methods using different normalization functions and 
the fact that different final weights and rankings can be obtained because of applying the same method using 
different normalization functions have been exemplified by various authors recently. Lakshm and Venkatesan 
(2014) applied linear max-min, linear sum-based, linear max, and Gaussian normalization techniques 
separately to the TOPSIS method using vector normalization in its original form. Then, the evaluation 
comparisons were made regarding the algorithm's time and space complexity. According to the results 
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obtained, the linear sum-based normalization technique was found to be the most advantageous method in 
terms of time and space complexity, while the linear max-min normalization technique was ranked last. 
Özdağoğlu (2014) tested the effects of linear, vector, and non-monotone normalization techniques on 
MOORA method results with synthetic data sets produced under different scenarios. According to the results, 
it is seen that the differences in the results obtained, especially in non-monotone normalization, are more 
significant, while the results of other techniques are very similar. Vafei et al. (2016) replicated the AHP 
method using five different normalization techniques. They found that the logarithmic normalization 
technique gave the most different results from the others (linear sum, linear max-min, linear interval, and 
vector normalization). Vafei et al. (2016) repeated the Analytic Hierarchy Process (AHP) method using five 
different normalization techniques and found that the logarithmic normalization technique gave the most 
different result from the others (linear sum, linear max-min, linear interval, and vector normalization). 
Jafaryeganeh et al. (2020) examined the effect of maximum linear, linear max-min, and vector normalization 
techniques on the Weighted Sum Model (WSM), TOPSIS, and ELECTRE rankings. They concluded that the 
rankings for different normalization techniques are highly correlated in all three multi-criteria decision-
making methods. Satıcı (2021) presented a comparative analysis of the WASPAS method using a linear ratio-
based 0-1 Interval Normalization technique with other linear normalization techniques (max, max-min, sum-
based), vector normalization, logarithmic normalization, and accuracy-enhanced normalization techniques. 
When the results obtained are examined, it is found that the results of the normalization technique initially 
used for the WASPAS method and the linear sum-based normalization and vector normalization techniques 
are very close to each other so that these techniques can be used interchangeably in the WASPAS method. 
The Linear Normalization (Max-Min) technique gives less similar results compared to other normalization 
techniques.  Vafaei et al. (2022) perform a similar study with Simple Additive Weighting (SAW) method. They 
used linear ratio, linear sum, linear max-min, and vector normalization techniques separately in their study, 
investigating how SAW ranking results are affected by the normalization technique used. It was seen that the 
most different ranking result from the other three was obtained with the linear max-min normalization 
technique, while the results of linear summation and vector normalization were closer to each other. Another 
study using multiple normalization was recently conducted by Puška et al. (2023). They used two different 
linear normalization techniques together in both the MEREC method for criteria weighting and the CRADIS 
method for ranking in the electric vehicle selection problem and performed the integration with the 
arithmetic mean method. 

 In addition to studies aiming to show how the results of methods known to use a single normalization 
technique are affected by different normalization techniques, specific multi-criteria decision-making 
methods that use more than one normalization technique together and offer integrated single-ranking forms 
have started to be developed to obtain more reliable and robust results. The MACONT method, one of the 
methods with the mentioned features, was introduced by its developers, Wen et al., in 2020 as an algorithm 
that simultaneously uses three different linear normalization techniques (sum-based, ratio-based, and max-
min). In his study in 2023, Nguyen introduced new variations to the method with different combinations of 
normalization techniques. In the literature, it is seen that studies on the MACONT method have been carried 
out in areas such as insulation material evaluation (Aksakal et al., 2022), tradeoff analysis in transportation 
budget allocation (Truong & Li, 2023), waste management (Simic et al., 2023), vocational education quality 
assessment (Huang & Chen, 2023). 

 The Double Normalized MARCOS (DNMARCOS) method was developed by Ivanović et al. in 2022. In 
this method, linear and vector normalization techniques are applied together. Three different methods 
(Complete compensatory model (CCM), Un-compensatory model (UCM), and Incomplete compensatory 
model (ICM)) are used to obtain integrated utility values from normalized values. A single final ranking score 
is obtained with a weighted average function that integrates these utility values (Ivanović et al., 2022). 
DNMARCOS, which is still a new method, was used by its developers to select a truck mixer concrete pump, 
and then Saha et al. (2023) used it to solve the warehouse site selection problem.  

 Alternative Ranking Order Method Accounting for Two-Step Normalization (AROMAN), a newer 
method than DNMARCOS, was developed in Bošković et al (2023a). The method, which uses linear max-min 
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normalization function and vector normalization together, achieves the result with fewer computational 
steps and calculations than the DNMARCOS method. Immediately after the method was developed in 2023, 
it started to deepen its place in the literature by being used for different purposes such as improving the 
sustainability of different postal networks (Nikolić et al., 2023), selecting the type of cargo bicycle delivery 
(Bošković et al., 2023b), selecting professional drivers (Čubranić-Dobrodolac et al., 2023). 

 In this study, DNMARCOS, AROMAN, and MACONT methods, which use different multiple 
normalization techniques together, are discussed comparatively based on the Modified Preference Selection 
Index (MPSI), and the method applications are carried out on the robot vacuum cleaner selection problem. 
In addition to these methods, CRADIS, MAUT, and MOOSRA methods, which use only one of the 
normalization techniques, were also analyzed, and the results were evaluated comparatively. In this context, 
the data set used is introduced in the second part of the study, and detailed information about the applied 
methods is given. The findings and results of the comparative analyses are presented in the third section, 
and the conclusions are evaluated in the last section. 

 2. Methodology 

 2.1. Data Set 

 This research used a dataset consisting of 41 alternatives and 11 criteria. To determine the list of 
alternatives, the names of all the brands of robot vacuum cleaners available for purchase in Turkey (60 
brands) were first listed. After that, the most well-known brands in the market were determined with the 
help of 100 participants. The models of the most recognized 10 brands in sales were included in the 
alternative list. Evaluation criteria were decided based on product features and factors that are commonly 
considered while making purchases. These criteria are shown in Table 2.  

Table 2. Criteria of the Research 

Code Criterion Unit Optimization Direction 

C1 Price TL Min 
C2 Suction Pa Max 
C3 Passable Obstacle Level mm Max 
C4 Hopper Capacity ml Max 
C5 Charging Time hour Min 
C6 Noise Level Dba Min 
C7 Number of Cleaning Modes number Max 
C8 Weight kg Min 
C9 Height Mm Min 
C10 Product Review point Max 
C11 Wireless Working Time second Max 

 

 The dataset was created using information obtained from an online shopping platform and brand 
websites between 04.08.2023 and 09.08.2023. The dataset used in the analysis is presented in Appendix 1. 

 2.2. Modified Preference Selection Index (MPSI) Method 

 The Preference Selection Index (PSI) Method is one of the objective weighting methods developed 
by Maniya and Bhatt in 2010 to solve multicriteria decision-making problems. Then Gligori´c et al. (2022) 
modified the method. The method is based on calculating the degree of oscillation using the Euclidean 
distance between the normalized values of the criteria and their mean values. The method's strengths are 
that it provides an objective calculation of criterion weights, is easy to understand, and is not time-
consuming. The MPSI method has five steps for calculating the criteria weights (Gligori´c et al., 2022). 

 Step 1:  Construct the initial decision-making matrix (A/C) 
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 The initial decision-making matrix is constructed where 𝑚 denotes alternatives and 𝑛 denotes criteria 
as follows. 

(𝐴 𝐶⁄ ) = [𝑥𝑖𝑗]𝑚×𝑛 = |

𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

|  (9) 

 Step 2: Obtain the normalized decision matrix 𝑅.  

 Linear normalization technique normalizes the initial decision matrix elements, and normalized 
matrix R is formed as follows. Equations 3 and 4 are used to calculate the normalized values (𝑟𝑖𝑗) in the matrix 

R. 

𝑅 = [𝑟𝑖𝑗]𝑚×𝑛
= |

𝑟11 ⋯ 𝑟1𝑛
⋮ ⋱ ⋮
𝑟𝑚1 ⋯ 𝑟𝑚𝑛

| (10) 

 Step 3: Calculate each criterion's mean normalized value v alt j. 

𝑣𝑗 =
∑ 𝑟𝑖𝑗
𝑚
𝑖=1

𝑚
,     𝑗 = 1, 2,… , 𝑛 (11) 

Step 4: Calculate the preference variation value (𝑝𝑗) of criteria. 

𝑝𝑗 =∑(𝑟𝑖𝑗 − 𝑣𝑗)
2

𝑚

𝑖=1

,     𝑗 = 1, 2, … , 𝑛 (12) 

Step 5: Calculate the criteria weights (𝑤𝑗). 

𝑤𝑗 =
𝑝𝑗

∑ 𝑝𝑗
𝑛
𝑗=1

 (13) 

 2.3. Double Normalized MARCOS (DNMARCOS) Method 

 MARCOS method presented by Stević et al. (2020) is based on defining the relationship between 
alternatives and ideal- anti-ideal values of the alternatives. The original MARCOS method used ratio-based 
linear normalization functions to make the criteria unidimensional. Ivanovic et al. suggested the double 
normalized MARCOS (DNMARCOS) method in 2022. Linear and vector normalization are utilized in the 
DNMARCOS method. The method consists of three types of aggregation models, specifically the complete 
compensatory model (CCM), the Un-compensatory model (UCM), and the Incomplete compensatory model 
(ICM), to aggregate the different normalization results. The steps for the DNMARCOS algorithm are as follows 
(Ivanovic et al, 2022): 

 Step 1: Build the initial decision matrix 𝑀 

𝑀 = [𝑥𝑖𝑗]𝑚×𝑛     (14) 

Step 2: Normalize the matrix 𝑀 by using the simple linear normalization method given in Equations 3 
– 4 and obtain the 𝑀′ matrix. 

𝑀′ = [𝑥𝑖𝑗
′ ]
𝑚×𝑛

= |
𝑥11
′ ⋯ 𝑥1𝑛

′

⋮ ⋱ ⋮
𝑥𝑚1
′ ⋯ 𝑥𝑚𝑛

′
| (15) 
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 Step 3: Obtain the vector normalized matrix (VNM) 𝑀′′ by using Equations 7-8. 

𝑀′′ = [𝑥𝑖𝑗
′′]
𝑚×𝑛

 (16) 

 Step 4: Built the extended linear normalized matrix (ELNM) 𝛩′ 

 Add the ideal (ID) and anti-ideal (AID) solutions to the linear normalized matrix  𝑀′ as rows. 

𝑥𝑗
′(+)

= {
𝑚𝑎𝑥
𝑖
 𝑥𝑖𝑗
′ , 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑚𝑖𝑛
𝑖
 𝑥𝑖𝑗
′ , 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (17) 

𝑥𝑗
′(−)

= {
min
𝑖
 𝑥𝑖𝑗
′ , 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

max
𝑖
 𝑥𝑖𝑗
′ , 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (18) 

Step 5: Derive the extended vector normalized matrix 𝛩′′ 

Add the ideal (ID) and anti-ideal (AID) solutions to the vector normalized matrix  𝑀′′ as rows. 

𝑥𝑗
′′(+)

= {
max
𝑖
 𝑥𝑖𝑗
′′ , 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

min
𝑖
 𝑥′𝑖𝑗
′ , 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (19) 

𝑥𝑗
′′(−)

= {
min
𝑖
 𝑥𝑖𝑗
′′ , 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

max
𝑖
 𝑥′𝑖𝑗
′ , 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 (20) 

Step 6: Multiply the ELNM with criteria weights and obtain 𝛤′ matrix. 

𝑎̃𝑖𝑗 = 𝑤𝑗𝑥𝑖𝑗
′  (21) 

𝑎̃𝑗
(−)
= 𝑤𝑗𝑥𝑗

′(−)
 (22) 

𝑎̃𝑗
(+)
= 𝑤𝑗𝑥𝑗

′(+)
 (23) 

Step 7: Calculate the weighted EVNM matrix 𝛤′′ by using following equations. 

𝛽̃𝑖𝑗 = (𝑎𝑖𝑗
′′)
𝑤𝑗  (24) 

𝛽𝑖𝑗
(−)
= (𝑎𝑗

′′(−))
𝑤𝑗

 (25) 

𝛽𝑖𝑗
(+)
= (𝑎𝑗

′′(+)
)
𝑤𝑗

 (26) 

 Step 8: Compute the sub-ordinate values of the alternatives. 

 Sub-ordinate values are determined based on the CCM, UCM and ICM models. 

 8.1. Sub-ordinate values of alternatives by CCM model 

𝑆𝑖
(1)
=∑𝑎̃𝑖𝑗

𝑛

𝑗=1

,    (𝑖 = 1,2, … ,𝑚) (27) 
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𝐴𝐼𝐷𝑖
(1)
=∑𝑥𝑖𝑗

(−)

𝑛

𝑗=1

,     (𝑖 = 1, 2,… ,𝑚) (28) 

𝐼𝐷𝑖
(1)
=∑𝑥𝑖𝑗

(+)

𝑛

𝑗=1

,     (𝑖 = 1,2,… ,𝑚) (29) 

8.2. Sub-ordinate values of alternatives by UCM model 

𝑆𝑖
(2)
= 𝑚𝑎𝑥

𝑗
 (𝑤𝑗 × (1 − 𝑥𝑖𝑗

′ ),    (𝑖 = 1, 2, … ,𝑚) (30) 

𝐴𝐼𝐷𝑖
(1)
= 𝑚𝑎𝑥

𝑗
 (𝑤𝑗 × (1 − 𝑥𝑖𝑗

(−)
),     (𝑖 = 1, 2,… ,𝑚) (31) 

𝐼𝐷𝑖
(2)
= 𝑚𝑎𝑥

𝑗
 (𝑤𝑗 × (1 − 𝑥𝑖𝑗

(+)
),     (𝑖 = 1, 2,… ,𝑚) (32) 

 8.2. Sub-ordinate values of alternatives by ICM model 

𝑆𝑖
(3)
=∏𝛽̃𝑖𝑗

𝑛

𝑗=1

,    (𝑖 = 1, 2, … ,𝑚) (33) 

𝐴𝐼𝐷𝑖
(3)
=∏𝛽𝑖𝑗

(−)

𝑛

𝑗=1

,     (𝑖 = 1, 2, … ,𝑚) (34) 

𝐼𝐷𝑖
(3)
=∏𝛽𝑖𝑗

(+)

𝑛

𝑗=1

,     (𝑖 = 1, 2, … ,𝑚) (35) 

 9. Calculate the utility degree of alternatives based on CCM, UCM, and ICM models.  

 9.1. Utility degree of alternatives based on CCM 

ℎ𝑖
1(−)

=
𝑆𝑖
(1)

𝐴𝐼𝐷𝑖
(1)

 (36) 

ℎ𝑖
1(+)

=
𝑆𝑖
(1)

𝐼𝐷𝑖
(1)

 (37) 

 9.2. Utility degree of alternatives based on UCM 

ℎ𝑖
2(−)

=
𝑆𝑖
(2)

𝐴𝐼𝐷𝑖
(2)

 (38) 

ℎ𝑖
2(+)

=
𝑆𝑖
(2)

𝐼𝐷𝑖
(2)

 (39) 
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 9.3. Utility degree of alternatives based on ICM 

ℎ𝑖
3(−)

=
𝑆𝑖
(3)

𝐴𝐼𝐷𝑖
(3)

 (40) 

ℎ𝑖
3(+)

=
𝑆𝑖
(3)

𝐼𝐷𝑖
(3)

 (41) 

 10. Compute the utility values of alternatives based on CCM, UCM, and ICM models.  

 10.1. Utility values of alternatives based on CCM 

𝜆𝑖
1(−)

=
ℎ𝑖
1(+)

ℎ𝑖
1(+)

+ ℎ𝑖
1(−)

 (42) 

𝜆𝑖
1(+)

=
ℎ𝑖
1(−)

ℎ𝑖
1(+)

+ ℎ𝑖
1(−)

 (43) 

 10.2. Utility values of alternatives based on UCM 

𝜆𝑖
2(−)

=
ℎ𝑖
2(+)

ℎ𝑖
2(+)

+ ℎ𝑖
2(−)

 (44) 

𝜆𝑖
2(+)

=
ℎ𝑖
2(−)

ℎ𝑖
2(+)

+ ℎ𝑖
2(−)

 (45) 

 10.3. Utility values of alternatives based on ICM 

𝜆𝑖
3(−)

=
ℎ𝑖
3(+)

ℎ𝑖
3(+)

+ ℎ𝑖
3(−)

 (46) 

𝜆𝑖
3(+)

=
ℎ𝑖
3(−)

ℎ𝑖
3(+)

+ ℎ𝑖
3(−)

 (47) 

 Step 11:  Obtain the general utility value for each alternative. 

𝜆𝑖 = 𝑝 × 

(

  
 ℎ𝑖

1(+) + ℎ𝑖
1(−)

1 +
1 − 𝜆𝑖

1(−)

𝜆𝑖
1(−) +

1 − 𝜆𝑖
1(+)

𝜆𝑖
1(+)

)

  
 
+ 𝑞 ×

(

  
 ℎ𝑖

2(+) + ℎ𝑖
2(−)

1 +
1 − 𝜆𝑖

2(−)

𝜆𝑖
2(−) +

1 − 𝜆𝑖
2(+)

𝜆𝑖
2(+)

)

  
 

+ (1 − 𝑝 − 𝑞) ×

(

  
 ℎ𝑖

3(+) + ℎ𝑖
3(−)

1 +
1 − 𝜆𝑖

3(−)

𝜆𝑖
3(−) +

1 − 𝜆𝑖
3(+)

𝜆𝑖
3(+)

)

  
 

 

(48) 
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 Step 12: Rank the alternatives and determine the best one. Maximum general utility value shows the 
best alternative. 

 2.4. Alternative Ranking Order Method Accounting for Two Step Normalization (AROMAN) 

 The AROMAN method, developed by Bošković et al. (2023a), is a MCDM method in which the 
matrices obtained from the two-stage normalization process are integrated by calculating the average. The 
method, which aims to obtain more robust ranking results by applying linear and vector normalization 
techniques together, was first applied for the selection of electric vehicles. The method, which is still very 
new in the literature, was later applied to cargo bicycle delivery mode selection (Boskovic et al., 2023b), 
sustainable human resource management assessment (Rani et al., 2023), driver selection (Čubranić-
Dobrodolac et al., 2023), assessment of sustainability of rural postal network (Nikolić et al., 2023), 
wastewater treatment technology selection (Alrasheedi et al., 2024), sustainable delivery model selection 
(Dobrodolac et al., 2024), sustainable competitiveness assessment (Kara et al., 2024). 

 AROMAN method has six computational steps as following (Boskovic et al., 2023a);  

 Step 1: Initial decision matrix  𝑋 = [𝑥𝑖𝑗]𝑚×𝑛
 is determined with m alternative n criteria.  

 Step 2: In the second step, the initial decision matrix X is normalized by linear max-min (Equation 5 
and 6) and vector normalization (Equation 7 and 8) methods. Same normalization equations are used both 
benefit and cost criterion types. Then aggregated average normalization values (𝑡𝑖𝑗

𝑛𝑜𝑟𝑚) are calculated by 

Equation 49. 

𝑡𝑖𝑗
𝑛𝑜𝑟𝑚 =

𝛽𝑡𝑖𝑗 + (1 − 𝛽)𝑡𝑖𝑗
∗

2
         𝑖 = 1, 2, … ,𝑚;  𝑗 = 1, 2, … , 𝑛 (49) 

 𝛽 denotes the weight of the linear normalization method, varies between 0 and 1.  

 Step 3: Weighted normalized matrix is obtained by the help of Equation 50. 

𝑡̂𝑖𝑗 = 𝑊𝑖𝑗  . 𝑡𝑖𝑗
𝑛𝑜𝑟𝑚      𝑖 = 1, 2,… ,𝑚;  𝑗 = 1, 2,… , 𝑛     (50) 

 Step 4: The sum weighted normalized values of criteria are calculated by separating their types (max 
and min). 

𝐿𝑖 =∑𝑡̂𝑖𝑗
(min )

𝑗

           𝑖 = 1, 2, … ,𝑚;  𝑗 ∈ 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 (51) 

𝐴𝑖 =∑𝑡̂𝑖𝑗
(max )

𝑗

           𝑖 = 1, 2, … ,𝑚;   𝑗 ∈ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 (52) 

 Step 5. The final values of criteria function (𝑅𝑖) are computed. 

𝑅𝑖 = 𝐿𝑖
𝜆 + 𝐴𝑖

(1−𝜆)
                    𝑖 = 1, 2, … ,𝑚 (53) 

 Step 6. Rank the 𝑅𝑖 values by decreasing order.  The highest value of 𝑅𝑖 denotes the best alternative.  

 2.5. MACONT-T6 Method 

 MACONT is a MCDM method uses three normalization techniques simultaneously. In first paper 
about the MACONT method (Wen et al, 2020) authors propose the method by using three linear 
normalization techniques: sum-based normalization, ratio-based normalization, and max-min normalization. 
Then a newest paper is written by Nguyen (2023) have made analysis by different combinations of 
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normalization methods. MACONT T6 Model contains ratio based linear normalization, linear max-min 
normalization, and vector normalization techniques. Since the other MCDM methods used (DNMARCOS and 
AROMAN) also these normalizations, T6 model is considered in this paper.  

 MACONT-T6 has 6 calculation steps (Nguyen, 2023: 10490-10491; Wen et al., 2020: 862-863): 

 Step 1: Establish a decision matrix same as in other methods used in this paper.   

 Step 2: Establish three different normalization matrices by using linear ratio based, linear max-min, 
and vector normalization techniques shown in range of Equation 3-8. 

 Step 3: Compute the normalized balance values (𝑥𝑖𝑗). 

𝑥𝑖𝑗 = 𝑝. 𝑥𝑖𝑗
′ +  𝑞. 𝑥𝑖𝑗

′′ + (1 − 𝑝 − 𝑞)𝑥𝑖𝑗
′′′ (54) 

 Where the balance parameters get reel values between 0 and 1 (0 ≤ 𝑝, 𝑞 ≤ 1)  and determined by 
decision makers and/or experts. 

 Step 4: Calculate the 𝑆1(𝑎𝑖) and 𝑆2(𝑎𝑖) values as follows: 

𝑆1(𝑎𝑖) = 𝛿
𝜌𝑖

√∑ (𝜌𝑖)
2𝑚

𝑖=1

+ (1 − 𝛿)
𝜍𝑖

√∑ (𝜍𝑖)
2𝑚

𝑖=1

 (55) 

𝑆2(𝑎𝑖) = 𝜗.max (𝑤𝑗. (𝑥𝑖𝑗 − 𝑥̅𝑗)) + (1 − 𝜗).min (𝑤𝑗. (𝑥𝑖𝑗 − 𝑥̅𝑗)) (56) 

𝜌𝑖 =∑𝑤𝑗. (𝑥𝑖𝑗 − 𝑥̅𝑖𝑗)

𝑛

𝑗=1

,    𝑖 = 1, 2, … ,𝑚 (57) 

𝜍𝑖 =
∏ (𝑥̅𝑗 − 𝑥𝑖𝑗)

𝑤𝑗𝑛
𝛾=1

∏ (𝑥𝑖𝑗 − 𝑥̅𝑗)
𝑤𝑗𝑛

𝜂=1

 (58) 

 Where  𝑤𝑗 denotes the weights of the criteria, 𝛾 denotes the criteria set that satisfy the 𝑥𝑖𝑗 < 𝑥̅𝑗, and 

𝜂 acts the criteria meet the condition of 𝑥𝑖𝑗 ≥ 𝑥̅𝑗. Furthermore 𝛿 and  𝜗 are preference parameters for 

comprehensive performances and best performances of alternatives taking the value between zero and one. 
𝜌𝑖 is the arithmetic weighted aggregation operator while 𝜍𝑖 is geometric weighted aggregation operator.  

 Step 5: Compute the final comprehensive score   𝑆(𝑎𝑖) for each alternative. 

𝑆(𝑎𝑖) =
1

2
 𝑆1(𝑎𝑖) +

𝑆2(𝑎𝑖)

√∑ (𝑆1(𝑎𝑖))
2𝑚

𝑖=1

,      𝑖 = 1, 2, … ,𝑚. 
(59) 

 Step 6: Rank the alternatives using final comprehensive scores. The highest score indicates best 
alternative.  

 2.6. CRADIS Method 

 The CRADIS method, which is a combination of the application steps of ARAS, MARCOS and TOPSIS 
methods, is a multi-criteria decision-making method based on the deviation of alternatives from ideal and 
anti-ideal solutions. The CRADIS method uses a ratio-based linear normalization technique. In the method, 
the alternatives are ranked according to the average deviations from the utility degrees obtained at the end 
of the process steps (Puska et al., 2022). 
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 2.7. MAUT Method 

 The MAUT method, which is based on the multi attribute utility theory proposed by Keeney and Raiffa 
in 1976, argues that there is a utility value or function to be maximized that reflects the criteria to be used in 
evaluating alternatives in a decision problem (Nikou, 2011; Zietsman et al., 2006). The utility values of 
alternatives for each criterion are determined by max-min linear normalization process (Aytaç Adalı & Tuş 
Işık, 2017). 

 2.8. MOOSRA Method 

 The MOOSRA method, which is one of the multi-objectives, multi-criteria decision-making methods, 
is often referred to in the literature together with another multi-criteria decision-making method, the 
MOORA method. The MOOSRA method, which is like the MOORA ratio approach, differs from the MOORA 
method in the process step where performance scores are obtained. In the MOORA method, the 
performance scores of the alternatives are calculated by the difference between the weighted normalized 
values of the benefit and cost criteria, while in the MOOSRA method, this score is obtained by proportioning 
(Ulutaş, 2020). Thanks to this proportioning method, negative performance scores are prevented (Jagadish 
& Ray, 2014). In the method using vector normalization, the alternative with the highest performance score 
is selected as the best alternative. 

 3. Results 

 In this section of the study, firstly, the criteria weights are determined by MPSI method.  The findings 
of MPSI weighted DNMARCOS, AROMAN and MACONT-T6 analyses are shared. Comparative analyses of 
these methods using multiple normalization with each other and with the results of methods using a single 
normalization function (CRADIS, MOOSRA, MAUT) are also included at the end of the section. 

 3.1. Determining Criteria Weights Using MPSI Method 

 The criteria weights in Table 3 were obtained by following the MPSI method steps in the range of 
Equation 9-13 with the data set in Appendix 1 as the initial decision matrix.  According to the weights 
obtained, the price of the product (C1) was found to be the most important criterion, followed by suction 
(C2) and wireless working time (C11) features. Among the criteria determined, the criterion with the least 
effect on the robot vacuum cleaner decision was the product evaluation score (C10). 

Table 3. MPSI Weights of Criteria 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

vj 0.5550 0.3838 0.4982 0.5894 0.2630 0.6315 0.4512 0.5903 0.8213 0.9088 0.6840 

pj 2.1993 0.9526 0.5055 0.7308 0.7774 0.3451 0.8087 0.4147 0.7677 0.1240 0.9203 

wj 0.2574 0.1115 0.0591 0.0855 0.0910 0.0404 0.0946 0.0485 0.0898 0.0145 0.1077 

  

 3.2. Selection of Robot Vacuum Cleaner Using DNMARCOS Method 

 Some parts of the normalized decision matrices obtained by Equations 15 to 20 in the DNMARCOS 
method where the data set in Appendix 1 is used as the initial decision matrix are given in Table 4 and Table 
5. 
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Table 4. Extended Linear Ratio-Based Normalization Matrix 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.1891 0.6296 0.5000 0.5000 0.6923 1.0000 0.5000 0.6667 0.2229 0.8043 0.4412 
A2 0.2117 0.8500 0.5000 0.8000 0.7692 0.8125 0.4000 0.7450 0.2943 0.8409 0.6818 
A3 0.2758 0.6296 0.5000 0.5000 0.7692 0.8125 1.0000 0.7167 0.2700 0.7551 0.5000 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A40 0.2159 0.7727 0.5000 0.4444 0.4615 0.9000 0.5000 0.5167 0.2286 0.9024 0.4167 
A41 0.2507 0.6800 0.5000 0.3333 0.9231 0.8000 0.5000 0.6167 0.2286 0.7872 0.5000 

𝒂𝒋
′(−)

 1.0000 0.2125 0.2500 0.2667 1.0000 1.0000 0.2500 1.0000 1.0000 0.7400 0.3409 

𝒂𝒋
′+)

 0.1755 1.0000 1.0000 1.0000 0.1538 0.5000 1.0000 0.3667 0.2229 1.0000 1.0000 

 

Table 5. Extended Vector Normalization Matrix 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.9356 0.8724 0.8470 0.8622 0.8461 0.8075 0.8348 0.8388 0.8887 0.8422 0.8277 
A2 0.9279 0.9055 0.8470 0.9139 0.8290 0.8436 0.7935 0.8199 0.8531 0.8490 0.8885 
A3 0.9061 0.8724 0.8470 0.8622 0.8290 0.8436 0.9174 0.8267 0.8652 0.8319 0.8479 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
A40 0.9265 0.8960 0.8470 0.8450 0.8974 0.8268 0.8348 0.8751 0.8859 0.8593 0.8175 
A41 0.9147 0.8818 0.8470 0.7933 0.7949 0.8460 0.8348 0.8509 0.8859 0.8388 0.8479 

𝒂𝒋
′(−)

 0.9403 0.6219 0.6940 0.7416 0.9658 0.9038 0.6695 0.9113 0.8887 0.8285 0.7770 

𝒂𝒋
′+)

 0.6596 0.9196 0.9235 0.9311 0.7778 0.8075 0.9174 0.7582 0.5008 0.8731 0.9240 

 

 The subordinate values obtained by Equations 27-35 are given in Table 6, the utility degrees of the 
alternatives are given in Table 7, and finally the utility values and DNMARCOS rankings of the alternatives are 
given in Table 8. 

Table 6. Subordinate Values of Alternatives  

Alternatives Si (1) Si(2) Si(3) Alternatives Si (1) Si(2) Si(3) 

A1 0.4534 0.2087 0.8713 ⋮ ⋮ ⋮ ⋮ 
A2 0.5361 0.2029 0.8757 A37 0.4523 0.1897 0.8749 

A3 0.5347 0.1864 0.8712 A38 0.5362 0.1663 0.8662 

A4 0.4990 0.1578 0.8518 A39 0.4937 0.1842 0.8488 

A5 0.4806 0.2036 0.8741 A40 0.4385 0.2018 0.8764 

A6 0.4915 0.1905 0.8634 A41 0.4777 0.1928 0.8604 

A7 0.4920 0.2120 0.8732 AID 0.6227 0.2574 0.8361 

⋮ ⋮ ⋮ ⋮ ID 0.4824 0.0878 0.7832 

 

Table 7. Utility Degrees of Alternatives 

Alternatives 

CCM UCM ICM 

hi (1) (-) hi (1) (+) hi (2) (-) hi (2) (+) hi (3) (-) hi (3) (+) 

A1 0.7281 0.9399 0.8109 2.3773 1.0421 1.1126 
A2 0.8608 1.1112 0.7883 2.3111 1.0474 1.1182 
A3 0.8587 1.1084 0.7242 2.1233 1.0420 1.1125 
A4 0.8013 1.0343 0.6131 1.7974 1.0188 1.0877 
A5 0.7718 0.9963 0.7911 2.3193 1.0454 1.1161 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A36 0.7013 0.9053 0.7607 2.2304 1.0393 1.1096 
A37 0.7263 0.9375 0.7370 2.1609 1.0464 1.1171 
A38 0.8610 1.1114 0.6463 1.8947 1.0360 1.1061 
A39 0.7928 1.0233 0.7159 2.0989 1.0152 1.0838 
A40 0.7041 0.9089 0.7841 2.2990 1.0482 1.1190 
A41 0.7671 0.9902 0.7493 2.1969 1.0291 1.0986 
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Table 8. Utility Values of Alternatives 

Alternatives 
CCM UCM ICM 

λi Rank 
λi (1) (-) λi (1) (+) λi (2) (-) λi (2) (+) λi (3) (-) λi (3) (+) 

A1 0.5635 0.4365 0.7457 0.2543 0.5163 0.4837 0.6696 8 
A2 0.5635 0.4365 0.7457 0.2543 0.5163 0.4837 0.6967 1 
A3 0.5635 0.4365 0.7457 0.2543 0.5163 0.4837 0.6755 4 
A4 0.5635 0.4365 0.7457 0.2543 0.5163 0.4837 0.6222 29 
A5 0.5635 0.4365 0.7457 0.2543 0.5163 0.4837 0.6752 5 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A36 0.4365 0.7457 0.2543 0.5163 0.4837 0.4365 0.6472 21 
A37 0.4365 0.7457 0.2543 0.5163 0.4837 0.4365 0.6477 19 
A38 0.4365 0.7457 0.2543 0.5163 0.4837 0.4365 0.6510 16 
A39 0.4365 0.7457 0.2543 0.5163 0.4837 0.4365 0.6504 17 
A40 0.4365 0.7457 0.2543 0.5163 0.4837 0.4365 0.6570 14 
A41 0.4365 0.7457 0.2543 0.5163 0.4837 0.4365 0.6575 13 

 

 As a result of the MPSI-weighted DNMARCOS analysis, the three best alternatives were A2. A7 and 
A32. while A25, A23 and A26 were ranked last. 

 3.3. Selection of Robot Vacuum Cleaner Using AROMAN Method 

 A part of the linear max-min normalization matrix obtained by Equation 5-6 in AROMAN method is 
given in Table 9. On the other hand, since the second normalization method of the method, vector 
normalization, is also used in DNMARCOS method, the same matrix is not given here again. The vector 
normalization matrix of the AROMAN method also consists of the normalized values in Table 5. The matrix 
containing the normalized values integrated with the help of Equation 49 is shown in Table 10 and the MPSI 
weighted aggregated normalized matrix is shown in Table 11. 

Table 9. Linear Max-Min Normalization Matrix 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.0166 0.1587 0.3333 0.3636 0.6364 1.0000 0.3333 0.4737 0.0000 0.6923 0.6552 
A2 0.0439 0.0476 0.3333 0.0909 0.7273 0.6250 0.5000 0.5974 0.0919 0.5385 0.2414 
A3 0.1216 0.1587 0.3333 0.3636 0.7273 0.6250 0.0000 0.5526 0.0607 0.9231 0.5172 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A40 0.0490 0.0794 0.3333 0.4545 0.3636 0.8000 0.3333 0.2368 0.0074 0.3077 0.7241 
A41 0.0912 0.1270 0.3333 0.7273 0.9091 0.6000 0.3333 0.3947 0.0074 0.7692 0.5172 

 

Table 10. Aggregated Normalization Matrix 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.2380 0.2578 0.2951 0.3065 0.3706 0.4519 0.2920 0.3281 0.2222 0.3836 0.3707 
A2 0.2430 0.2383 0.2951 0.2512 0.3891 0.3671 0.3234 0.3543 0.2362 0.3469 0.2825 
A3 0.2569 0.2578 0.2951 0.3065 0.3891 0.3671 0.2293 0.3448 0.2315 0.4387 0.3413 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A40 0.2439 0.2438 0.2951 0.3249 0.3153 0.4067 0.2920 0.2780 0.2233 0.2918 0.3854 
A41 0.2515 0.2522 0.2951 0.3801 0.4260 0.3615 0.2920 0.3114 0.2233 0.4020 0.3413 

 
Table 10. Weighted Aggregated Normalization Matrix  

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.0613 0.0287 0.0175 0.0262 0.0337 0.0182 0.0276 0.0159 0.0200 0.0056 0.0399 
A2 0.0625 0.0266 0.0175 0.0215 0.0354 0.0148 0.0306 0.0172 0.0212 0.0050 0.0304 
A3 0.0661 0.0287 0.0175 0.0262 0.0354 0.0148 0.0217 0.0167 0.0208 0.0064 0.0368 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A40 0.0628 0.0272 0.0175 0.0278 0.0287 0.0164 0.0276 0.0135 0.0201 0.0042 0.0415 
A41 0.0647 0.0281 0.0175 0.0325 0.0388 0.0146 0.0276 0.0151 0.0201 0.0058 0.0368 
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Table 11. Separately Normalized Weighted Values and Rankings of Alternatives 

 Li Ai Ri Rank 

A1 0.1491 0.1455 0.7676 25 
A2 0.1512 0.1315 0.7515 38 
A3 0.1539 0.1372 0.7627 28 
A4 0.1582 0.1458 0.7796 14 
A5 0.1448 0.1419 0.7573 35 
⋮ ⋮ ⋮ ⋮ ⋮ 

A36 0.1457 0.1498 0.7688 24 
A37 0.1420 0.1388 0.7493 39 
A38 0.1538 0.1359 0.7608 30 
A39 0.1608 0.1464 0.7835 12 
A40 0.1414 0.1458 0.7579 34 
A41 0.1532 0.1483 0.7765 16 

 

 The final AROMAN ranking scores obtained with the help of Equations 51. 52. and 53 are given in 
Table 11. The most successful alternatives of the AROMAN method, which uses a combination of max-min 
linear and vector normalization techniques, founded A10. A14 and A19, respectively. 

 3.4. Selection of Robot Vacuum Cleaner Using MACONT-T6 Method 

 The MACOT-t6 method uses the Linear Ratio Base 0-1 Interval normalization method in common with 
the DNMARCOS method, and the Iinear Max-Min normalization method in common with the AROMAN 
method. Therefore, the normalized matrices for the method are the same as the previously calculated Tables 
3 and 8. The normalized matrix balanced with the help of Equation 54 is given in Table 12. 

Tablo 12. Normalized Balanced Values of MACONT-T6 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.9490 0.4562 0.5601 0.5864 0.4773 0.4358 0.5560 0.6384 0.9629 0.8182 0.7519 
A2 0.9043 0.4010 0.5601 0.4460 0.4339 0.6113 0.6395 0.5716 0.8395 0.7558 0.5433 
A3 0.8070 0.4562 0.5601 0.5864 0.4339 0.6113 0.3891 0.5952 0.8766 0.9117 0.6823 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A40 0.8969 0.4168 0.5601 0.6332 0.6224 0.5274 0.5560 0.7826 0.9512 0.6623 0.7866 
A41 0.8412 0.4404 0.5601 0.7735 0.3508 0.6237 0.5560 0.6836 0.9512 0.8493 0.6823 

 

 The values of 𝜌𝑖, 𝜍𝑖, 𝑆1(𝑎𝑖) and 𝑆2(𝑎𝑖) obtained in the fourth stage of the MACONT method and the 

final comprehensive scores 𝑆(𝑎𝑖) of the alternatives are presented in Table 13. The final ranking scores 
indicate that A40 is the best alternative, followed by A1 in second place. 

Tablo 13. Final Comprehensive Scores 𝑆(𝑎𝑖) and Rankings of Alternatives 

 𝝆𝒊 𝝇𝒊 𝑺𝟏(𝒂𝒊) 𝑺𝟐(𝒂𝒊) 𝑺(𝒂𝒊) Rank 

A1 0.1145 2.0327 0.1817 0.0263 0.1943 2 
A2 0.0056 0.2854 0.0112 0.0166 0.0710 16 
A3 -0.0032 0.2764 -0.0010 0.0054 0.0208 25 
A4 -0.0059 0.0614 -0.0073 0.0020 0.0043 28 
A5 0.0464 0.7477 0.0727 0.0202 0.1161 10 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

A36 0.0639 7.7988 0.1836 0.0146 0.1493 9 
A37 0.0359 5.2650 0.1140 0.0136 0.1107 11 
A38 -0.0161 12.6237 0.1337 -0.0002 0.0662 18 
A39 0.0054 3.1171 0.0458 0.0018 0.0298 24 
A40 0.0725 25.8775 0.4181 0.0195 0.2858 1 
A41 0.0386 5.6811 0.1229 0.0094 0.0983 13 
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 4. Comparative Analysis 

 Comparative analyzes were carried out with different approaches based on the literature in this 
section. There are many research in the literature comparing different multi-criteria decision-making 
methods. Some of these studies focus on the relationship between the final scores of the methods or their 
similarities/differences (Abdulaal & Bafail, 2022; Baydaş & Pamucar, 2022; Kizielewicz et al., 2023). These 
papers utilize the correlations between the rankings produced by the methods to evaluate the relationship 
and similarity and the standard deviations of the ranking scores to compare the methods in terms of the 
variability of the results. Comparative evaluations of the methods used based on the correlation analysis 
between the final ranking scores and the examination of the variability of these scores are given in section 
4.1. 

 Some research in the literature compares different MCDM methods based on sensitivity analysis (Lee 
& Chang, 2018; Mulliner et al., 2016). The responses of the alternative rankings produced by the methods to 
the criteria weights are evaluated in this type of study. Sensitivity analyses were also made regarding the 
weights of the evaluation criteria considered in this research. The sensitivities of both the criteria and the 
MCDM methods used were evaluated against changing weights in section 4.2. 

In recent years, a number of papers benchmark different MCDM methods in terms of the algorithm 
structures they use (Alkahtani, 2019; Ghaleb, 2020; Junior et al., 2014). In this group, Junior et al. (2014)'s 
study compares multi-criteria decision-making methods under four titles: (1) Adequacy to changes of 
alternatives, (2) adequacy to changes of criteria, (3) agility in the decision process, and (4) computational 
complexity. Junior et al. (2014), compare the adequacy/appropriateness of alternatives and criteria titles in 
relation to sensitivity analyzes regarding whether the final rankings differ in case a new alternative or 
criterion is added or removed from the problem and evaluation of the problem according to the number of 
alternatives and criteria required for the healthy application of MCDM methods. In their study, the authors 
compared fuzzy AHP and TOPSIS methods on a small decision problem with five alternatives and five criteria. 
They found that even on this small problem, there was no statistically significant difference in the final 
rankings. Moreover, other studies used as references in this paper (e.g., Alkahtani, 2019; Ghaleb, 2020) have 
not also analyzed the adding or removing alternatives/criteria to the decision problem. On the other hand, 
these two comparison criteria are thought to be more suitable for methods such as AHP and ANP, where 
pairwise comparisons are made by decision makers and the consistency of pairwise comparisons is 
mandatory. Since there are many alternatives and criteria in the decision problem under consideration, the 
criterion or alternative to be added will most likely not create a statistically significant difference in the final 
rankings; due to the lack of a rule base regarding the number of alternatives and/or criteria for the application 
of the MCDM methods discussed in the study, these two comparison criteria proposed by Junior et al. (2014) 
are not used in this research. 

 "Agility in the decision process", another method comparison criterion proposed by Junior et al. 
(2014), is related to the number of judgments required from the decision maker in the methods used, in 
other words, the size of the initial decision matrix used by the methods. Since all the methods considered 
and compared in the study use the same initial decision matrix, the methods are not compared according to 
the agility of the decision process. 

 Since only the computational complexity of the method comparison steps suggested by Junior et al. 
(2014) is appropriate for this study, the methods are compared in terms of their complexity. Computational 
complexity, a criterion related to the number of operations involved in a multi-criteria decision-making 
method, is discussed in detail under section 4.3.   

 4.1. MCDM Methods’ Benchmarks 

 Correlation analysis (Bandyopadhyay, 2020; Mathew & Sahu, 2018) and standard deviation approach 
(Baydaş & Pamucar, 2022; Salabun & Piegat, 2017; Zaidan et al., 2017) are frequently used methods for 
comparing the performance of methods in the multi-criteria decision-making literature. The similarity and 
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differences in the performance of methods can be evaluated by correlation analysis of scores or ranking 
results obtained from different methods. 

 In the final stages of the study, all the results obtained, and the scores used to rank the alternatives 
are listed in Table 13. The correlations between the scores are shown in the Correlation Heat Map in Figure 
1. The results of the correlation analysis can be evaluated in three categories: 1) Relationships between 
methods using multiple normalizations 2) Relationships between methods using multiple normalizations and 
methods using a single normalization function 3) Relationships between methods using a single 
normalization function. Accordingly, the two methods with the highest relationship between scores in the 
first category are DNMARCOS and AROMAN methods. A strong negative relationship (r=-0.8) is found 
between the ranking scores of these two methods. In the second category, a very high positive relationship 
(r=0.93) is observed between MACONT-T6 and MAUT methods, as well as between MACONT-T6 and CRADIS, 
while a significant relationship is found between the scores of MACONT-T6 and MOOSRA. In the third and 
final category, the methods producing the highest similarity results are MAUT and CRADIS (r=0.91). 

 Considering the correlation coefficients between the final scores of the MCDM methods, it can be 
said that the normalization techniques used by the DNMARCOS method (linear ratio-based normalization, 
vector normalization) do not exhibit dominance over each other, and their effects on the final ranking are 
similar. On the other hand, it is seen that the vector normalization technique in AROMAN method and the 
linear normalization techniques in MACONT-T6 method have a more dominant effect on the final ranking of 
the alternatives than the other normalization techniques they use. 

Table 14. Final Scores and Rankings of Alternatives of the MCDM Methods 

 DNMARCOS AROMAN MACONT CRADIS MOOSRA MAUT 

 Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank 

A1 0.670 8 0.768 25 0.194 2 0.996 2 0.152 25 0.582 10 
A2 0.697 1 0.751 38 0.071 16 0.890 20 0.131 39 0.501 29 
A3 0.676 4 0.763 28 0.021 25 0.855 23 0.134 37 0.510 28 
A4 0.622 29 0.780 14 0.004 28 0.845 28 0.162 17 0.531 21 
A5 0.675 5 0.757 35 0.116 10 0.943 10 0.143 32 0.579 12 
A6 0.661 10 0.770 22 0.049 21 0.890 19 0.150 26 0.532 20 
A7 0.689 2 0.759 32 0.159 7 0.993 3 0.145 30 0.553 18 
A8 0.638 25 0.772 21 0.007 27 0.849 25 0.152 24 0.527 23 
A9 0.674 6 0.767 26 0.180 4 1.000 1 0.153 23 0.585 6 
A10 0.639 24 0.788 10 -0.010 31 0.816 32 0.154 21 0.488 32 
A11 0.629 27 0.773 20 0.106 12 0.892 18 0.168 12 0.576 13 
A12 0.620 31 0.769 23 -0.273 41 0.685 41 0.109 41 0.262 41 
A13 0.620 30 0.759 33 -0.099 34 0.754 38 0.126 40 0.427 35 
A14 0.641 23 0.756 36 0.051 20 0.917 13 0.153 22 0.602 5 
A15 0.609 32 0.795 7 -0.010 30 0.847 26 0.184 5 0.520 26 
A16 0.630 26 0.792 8 0.070 17 0.896 17 0.179 6 0.570 15 
A17 0.623 28 0.791 9 0.008 26 0.868 22 0.175 7 0.541 19 
A18 0.561 37 0.829 1 -0.180 37 0.749 39 0.210 1 0.354 40 
A19 0.659 12 0.787 11 0.079 14 0.900 15 0.165 14 0.564 16 
A20 0.584 35 0.799 6 -0.146 35 0.742 40 0.164 15 0.398 36 
A21 0.558 38 0.825 2 -0.222 40 0.796 35 0.203 3 0.383 38 
A22 0.648 20 0.776 17 0.032 23 0.843 30 0.149 28 0.510 27 
A23 0.550 40 0.783 13 0.052 19 0.900 16 0.169 10 0.555 17 
A24 0.564 36 0.803 5 -0.207 39 0.765 37 0.159 19 0.380 39 
A25 0.551 39 0.809 4 -0.206 38 0.778 36 0.169 11 0.392 37 
A26 0.549 41 0.815 3 -0.152 36 0.806 34 0.196 4 0.428 34 
A27 0.649 18 0.778 15 0.183 3 0.969 6 0.171 8 0.624 2 
A28 0.669 9 0.764 27 0.072 15 0.939 12 0.166 13 0.583 9 
A29 0.661 11 0.756 37 0.004 29 0.843 29 0.133 38 0.500 31 
A30 0.645 22 0.761 31 -0.022 32 0.814 33 0.135 36 0.479 33 
A31 0.589 34 0.773 19 -0.034 33 0.845 27 0.162 16 0.524 25 
A32 0.676 3 0.746 41 0.153 8 0.969 5 0.135 35 0.585 7 
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Table 14. Final Scores and Rankings of Alternatives of the MCDM Methods (Continue) 

 DNMARCOS AROMAN MACONT CRADIS MOOSRA MAUT 

 Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank 

A33 0.603 33 0.775 18 0.165 6 0.958 9 0.204 2 0.672 1 
A34 0.671 7 0.746 40 0.167 5 0.963 8 0.138 33 0.584 8 
A35 0.657 15 0.762 29 0.049 22 0.851 24 0.145 29 0.525 24 
A36 0.647 21 0.769 24 0.149 9 0.966 7 0.158 20 0.617 4 
A37 0.648 19 0.749 39 0.111 11 0.905 14 0.145 31 0.580 11 
A38 0.651 16 0.761 30 0.066 18 0.828 31 0.136 34 0.500 30 
A39 0.650 17 0.784 12 0.030 24 0.889 21 0.170 9 0.528 22 
A40 0.657 14 0.758 34 0.286 1 0.985 4 0.150 27 0.618 3 
A41 0.658 13 0.777 16 0.098 13 0.940 11 0.160 18 0.571 14 

Std.Dev 0.273 0.243 0.227 0.204 0.212 0.247 

 

Figure 1. Correlation Heat Map for the Methods’ Final Scores 

 

 

 Another approach used in comparing the results of MCDM methods is the standard deviation 
approach (Baydaş & Pamucar, 2022; Zaidan et al., 2017). Baydaş and Pamucar (2022) proposed the two-stage 
standard deviation method, based on the study of Wang and Rangaiah (2017). In this method, first the final 
scores obtained because of different methods are normalized with the max-min linear normalization 
technique (Equation 60). Then, the variations are evaluated by calculating the standard deviations of the 
normalized scores (Equation 61). 

𝐹𝑖𝑗 =
𝑓𝑖𝑗 −𝑚𝑖𝑛𝑓𝑖𝑗

𝑚𝑎𝑥𝑓𝑖𝑗 −𝑚𝑖𝑛𝑓𝑖𝑗
 (60) 

𝜎𝑗 = √
∑ (𝐹𝑖𝑗 − 𝐹̅𝑖𝑗)

2𝑚
𝑖=1

𝑚
                     𝑗 = 1. 2.… , 𝑛 (61) 

 The bar chart of the calculated standard deviation scores of the methods used in the study is shown 
in Figure 2. Accordingly, among the methods that use multiple normalization functions, the method with the 
highest standard deviation was DNMARCOS, while the method that produced a score with the lowest 
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standard deviation was the MACONT-T6 method. The MAUT method provided ranking with scores with the 
lowest variability among all methods. While low variability is desired in many statistical interpretations, this 
situation is interpreted in the opposite way in method comparison. It can be concluded that the method that 
produces a ranking score with a high standard deviation achieves a ranking by separating the alternatives 
more clearly. In this case, it can be said that the performance of DNMARCOS is better than other methods 
among the methods that use multiple normalization methods. 

Figure 2. Standard Deviations of Methods  

 

 

 4.2. Sensitivity Analysis 

 In MCDM problems, criterion weights have a significant impact on the final rankings. Criteria weights 
may affect the final scores of different ranking methods differently. For this reason, it is also important to 
perform sensitivity analyses regarding criterion weights in method comparison studies. 

 Weighting scenarios were created in order to make comparisons between MCDM methods used. 
Each criterion was weighted with 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90 and 0.99 in the scenarios, 
respectively, the other criteria were assumed to be equally weighted. While determining the weight 
coefficients, it was ensured that the sum of the criteria weights in the scenario was 1.00. 88 scenarios were 
analyzed for each of DNMARCOS, AROMAN and MACONT-T6 methods and 264 scenarios in total. Figure 3 
was prepared with the Spearman rank correlation coefficients between the rankings obtained from the 
scenarios. 

 In order to compare the results obtained from DNMARCOS, AROMAN and MACONT-T6 methods 
more clearly, coloring was done according to the magnitude of the correlation coefficients based on scenarios 
where the weight of each criterion is 0.5. Accordingly, dark green cells mean that the alternative ranking 
obtained when the criterion weight takes the value at the beginning of the column does not change much. 
When the color goes towards yellow, it means that the correlation between the rankings decreases.  For each 
criterion, the first row represents the correlation analysis results obtained from DNMARCOS, the second row 
from AROMAN and the third row from MACONT-T6 method. 

 According to the results, the criterion with the least sensitivity to the criteria weights is C9 (Height), 
followed by C5 (Charging Time) and C11 (Wireless Working Time). The most sensitive criteria to the weights 
are C4 (Hopper Capacity), C2 (Suction) and C7 (Number of Cleaning Modes). When the sensitivity is evaluated 
in terms of methods, it is seen that the rankings of the DNMARCOS method are highly affected by the changes 
in the criteria weights. MACONT-T6 method is the least affected by the weights and had the lowest sensitivity.   

0

0,05

0,1

0,15

0,2

0,25

0,3

DNMARCOS AROMAN MACONT

0,273

0,243
0,227



 

148       Business and Economics Research Journal, 15(2):129-154, 2024 
 

Comparative Analysis of the MCDM Methods with Multiple Normalization Techniques: Three Hybrid Models Combine MPSI 
with DNMARCOS, AROMAN, and MACONT Methods 

Figure 3. The Sensitivity Analysis Results with Changed Weights 
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 4.3. Complexity of MCDM Methods 

 Computational complexity is a measure used to compare multi-criteria decision-making methods. All 
suggested approaches' computational complexity was assessed by examining time complexity, T, within the 
calculations, considering the number of augmentations (Alkahtani et al., 2019; Chang, 1996; Ghaleb et al., 
2020; Junior et al., 2014). The number of operations used by the methods used in the study until the final 
ranking is obtained, where n is the number of alternatives and m is the number of criteria, and the complexity 
levels can be calculated as follows: 

• DNMARCOS method has 2nm operations in normalization steps, 4m operations in calculating ELNM and 
EVLNM values, 2m(n+2) for calculating weighted ELNM and EVLNM values, 3(n+2) for calculating 
secondary values, 6n for utility degrees, 6n for utility values, and 6n operations for general utility values. 
The computational complexity value for the DNMARCOS method is calculated with the Equation 62  

𝑇𝐷𝑁𝑀𝐴𝑅𝐶𝑂𝑆 = 4𝑚𝑛 + 8𝑚 + 10𝑛 + 6 (62) 

• In the AROMAN method, the complexity score, including 2(mn) operations in the normalization stage, 
mn for the aggregated normalization matrix, mn for the weighted normalized matrix, n for the sum of 
the weighted normalized values, and n for the final ranking scores of the alternatives, is calculated with 
Equation 63. 

𝑇𝐴𝑅𝑂𝑀𝐴𝑁 = 4𝑚𝑛 + 2𝑛 (63) 

• The complexity value of the MACONT-T6 method includes 3mn operations from normalization steps, mn 

from balanced normalized values, 2mn+5n operations from the remaining steps and is calculated with 

Equation 64. 

𝑇𝑀𝐴𝐶𝑂𝑁𝑇 = 6𝑚𝑛 + 5𝑛 (64) 
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 The results of the methods regarding the computational complexity are shown in the bar chart in 
Figure 3. Among the methods using multiple normalization, AROMAN was the method with the lowest 
complexity, while the MACONT-T6 method was the method with the highest computational complexity. 

Figure 3. Computational Complexity of Methods 

 

 

 5. Conclusion 

 There are lots of proposed multi-criteria decision-making method for solving complex decision 
problems that encompass conflicting multiple evaluation criteria and numerous alternatives. One of the most 
important distinguishing features of these methods is their normalization techniques. Using different 
normalization functions that standardize evaluation criteria units allows for different final rankings in multi-
criteria decision-making. To produce robust results, there has been an increase in the use of multi-criteria 
decision-making methods that combine more than one normalization technique. This study presents a 
comparative evaluation by applying the DNMARCOS, AROMAN, and MACONT methods to the same decision 
problem under the same conditions. The comparative analysis is divided into three groups: 1) Comparison of 
the results of methods applied with multiple normalization techniques (DNMARCOS, AROMAN, and 
MACONT) and methods applied with single normalization techniques (MAUT, MOOSRA, CRADIS) based on 
correlations 2) Comparison of the results of methods applied with multiple normalization techniques based 
on variabilities in final ranking scores 3) Comparison of the results of DNMARCOS, AROMAN, and MACONT 
based on sensitivity analysis 4) Comparison of the performances of algorithmic structures of DNMARCOS, 
AROMAN, and MACONT methods based on computational complexity. 

 The results of the comparative analysis in the first group showed that DNMARCOS and AROMAN have 
a high-level correlation in the opposite direction. The opposite direction in the ranking is the same-directional 
normalization expansion features for the benefit and cost criteria in AROMAN, and the criterion with a clear 
lead weight is minimization-oriented. Despite using two common normalization functions, the relationship 
between the final scores of DNMARCOS and MACONT methods is at a lower level.  

 Notably, the scores of MAUT, MOOSRA, and CRADIS methods using different normalization methods 
are highly similar, while the results of these methods and the results of multiple normalization methods are 
at a moderate level. This situation arises from the diversity of aggregation methods with multiple 
normalizations. The diversity and differences in ranking scores of different weight methods used in the 
aggregation function will increase and decrease.  
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 The sensitivity analysis results show that AROMAN and MACONT have more robust performances, 
while DNMARCOS rankings are more sensitive than the other methods in higher criteria weights. As the 
criterion weights decrease, serious changes are observed in the rankings. When a general evaluation was 
made, it was noted that the AROMAN method showed a better performance in terms of sensitivity. 

 The last comparison system evaluated the performances of DNMARCOS, AROMAN, and MACONT 
methods regarding programming complexity and standard deviations of final scores. According to both 
performance criteria, the worst-performing method was the MACONT method. While the DNMARCOS 
method, which produces ranking scores with high standard deviation, had the most minor calculation steps 
and the lowest complexity, the method with the least calculating steps and the lowest complexity was 
AROMAN.  

 Considering all the comparison results, it can be said that there is a trade-off between the advantages 
and disadvantages of the multi-criteria decision-making methods. A method with the best performance 
according to one benchmark may perform poorly according to another criterion. At this point, the decision 
maker's definition of performance will be essential and distinctive in performance comparison criterion 
evaluation. Aggregating the results of all benchmarks with an analytical method can also be suggested as 
another approach for the decision-maker. 

 Different normalization techniques can be used together and separately to evaluate the effects of 
different multi-criteria decision-making techniques on the results in future studies. Papers can be conducted 
on the performance of methods using multiple normalization in fuzzy and/or gray decision environments 
involving incomplete information and uncertainty.  
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Appendix 

Appendix 1. Data Set 
 

min max max max min min max min min max max 
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 6790.00 2700.00 20.00 400.00 4.50 80.00 4.00 4,00 78.00 4.60 170.00 

A2 7600.00 2000.00 20.00 250.00 5.00 65.00 5.00 4,47 103.00 4.40 110.00 

A3 9900.00 2700.00 20.00 400.00 5.00 65.00 2.00 4,30 94.50 4.90 150.00 

A4 13890.00 2700.00 20.00 400.00 4.50 65.00 5.00 4,20 94.50 4.80 150.00 

A5 7499.90 2000.00 20.00 600.00 4.00 65.00 3.00 3.30 110.00 4.00 150.00 

A6 9325.00 2700.00 20.00 400.00 5.50 65.00 4.00 4,30 94.50 4.40 150.00 

A7 6333.00 2000.00 20.00 500.00 5.50 65.00 5.00 4,20 80.00 4.30 110.00 

A8 12155.00 2700.00 20.00 400.00 4.50 65.00 4.00 4,30 95.00 4.70 150.00 

A9 6300.00 2700.00 20.00 400.00 5.00 65.00 4.00 4,30 95.00 4.70 170.00 

A10 14799.00 2000.00 20.00 450.00 6.00 65.00 3.00 4,30 105.00 4.20 200.00 

A11 11099.00 4000.00 20.00 450.00 4.00 68.00 4.00 3.56 100.40 4.30 150.00 

A12 32999.00 1700.00 20.00 300.00 3.00 69.00 2.00 3.20 87.00 4.60 75.00 

A13 19999.00 1700.00 20.00 400.00 3.00 59.00 4.00 3.80 93.00 5.00 75.00 

A14 11140.00 3000.00 40.00 385,00 3.00 60.00 2.00 2.20 90.00 4.40 150.00 

A15 15648.00 5000.00 20.00 300.00 6.00 65.00 4.00 3.90 100.00 4.40 180.00 

A16 11999.00 4000.00 17.00 350.00 6.00 65.00 4.00 3.80 96.00 4.60 220.00 

A17 13499.00 4200.00 20.00 470.00 6.00 67.00 3.00 3.60 96.50 4.70 180.00 

A18 25999.00 5100.00 20.00 400.00 6.00 67.00 3.00 3.50 350.00 4.60 180.00 

A19 10749.00 2700.00 20.00 750.00 6.00 67.00 2.00 3.70 96.50 4.60 180.00 

A20 22900.00 3200.00 20.00 300.00 6.00 55.00 3.00 3.90 170.00 4.60 180.00 

A21 35899.00 5100.00 20.00 400.00 4.00 68.00 3.00 3.60 96.50 4.60 180.00 

A22 12599,00 2000.00 20.00 460.00 6.00 65.00 4.00 3.20 96.50 4.80 150.00 

A23 22500.00 2000.00 20.00 480.00 1.00 55.00 5.00 3.50 96.00 4.80 180.00 

A24 32000.00 2500.00 20.00 460.00 2.50 67.00 2.00 4,50 96.00 4.70 180.00 

A25 32280.00 2500.00 20.00 470.00 2.50 67.00 3.00 4,70 96.00 4.70 180.00 

A26 27790.00 5100.00 20.00 400.00 6.00 59.00 3.00 3.50 96.50 4.40 180.00 

A27 7999.00 2700.00 20.00 500.00 4.00 75.00 5.00 3.60 105.00 5.00 180.00 

A28 8529.00 3400.00 10.00 200.00 4.00 77.00 8.00 3.00 100.50 3.70 150.00 

A29 11299.00 2700.00 10.00 400.00 4.00 65.00 4.00 4,50 80.00 4.40 120.00 

A30 13799.00 2700.00 10.00 400.00 4.00 65.00 4.00 4,50 80.00 4.40 120.00 

A31 17999.90 2700.00 30.00 500.00 3.00 60.00 4.00 3.60 80.00 3.90 120.00 

A32 7169.00 2200.00 20.00 600.00 3.00 69.00 3.00 3.30 81.50 4.60 110.00 

A33 11998.00 8000.00 20.00 450.00 2.50 45.00 3.00 3.70 102.00 4.60 150.00 

A34 7360.00 2700.00 20.00 550.00 4.00 50.00 3.00 3.60 81.00 4.70 110.00 

A35 11149.00 4000.00 20.00 450.00 4.60 60.00 2.00 3.80 97.00 4.90 120.00 

A36 8589.00 3000.00 20.00 550.00 3.00 80.00 3.00 3.50 82.00 4.60 180.00 

A37 9440.00 3000.00 20.00 450.00 3.00 60.00 4.00 3.00 98.00 4.70 110.00 

A38 12699.00 2100.00 20.00 500.00 4.00 40.00 3.00 6,00 95.00 4.60 120.00 

A39 10199.00 4000.00 20.00 550.00 6.50 72.00 4.00 4,15 98.80 4.60 120.00 

A40 7749.00 2200.00 20.00 450.00 3.00 72.00 4.00 3.10 80.00 4.10 180.00 

A41 8999.00 2500.00 20.00 600.00 6.00 64,00 4.00 3.70 80.00 4.70 150.00 

Max 35899.00 8000.00 40.00 750.00 6.50 80.00 8.00 6,00 350.00 5.00 220.00 

Min 6300.00 1700.00 10.00 200.00 1.00 40.00 2.00 2.20 78.00 3.70 75.00 

 

 

 

 

 


